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Abstract

The drawbacks of base correlations are well-known to quantitative credit
practitioners. The loss surface produced by any of its common implemen-
tations is arbitrageable either in the loss dimension, or the time dimension,
or both. Yet the approach has been quite popular in the industry, espe-
cially with correlation traders, not least for its ability to fit the standard
tranche market by definition, unlike any of the widely known “bottom-
up” models. Consequently a large effort has been put into developing the
base correlation framework into a workable pricing and risk management
system, even though its fundamental problems were never resolved.

In the present work we start from a typical base correlation loss sur-
face and seek to rectify it by relaxing as few conditions as possible. By
focusing on the areas where arbitrage occurs most often, we are able to
obtain an arbitrage-free loss surface with minimum modifications and still
price standard tranches within the bid-offer and most of the times, very
close to the mid. The new framework generates a series of loss distribu-
tions, and thus naturally offers a solution to such issues as pricing thin
tranches and parts of the capital structure outside the quoted detachment
points, previously dealt with by interpolation and extrapolation of base
correlations.

1 Introduction

Base correlations were introduced in [9] as an extension to the Gaussian copula
model with flat correlation (see e.g., [2, 7]). Default correlation was described
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by a single parameter ρ, a linear correlation between latent variables. With
the advent of standardised tranche markets in 2003, it has become obvious that
a single value of ρ was not sufficient to fit all tranche quotes simultaneously.
Backing out correlation values from market prices of different tranches of the
same portfolio (index) produced a “correlation smile”: junior mezzanine prices,
where most of the demand was focused, implied a lower correlation than either
equity or senior prices. This shape proved to be stable over time and was
qualitatively the same across maturities and even different indices.

These pictures, as well as the characterisation of tranches as options on the
portfolio loss, prompted an analogy between implied [Black-Scholes] volatility
for equity options and implied [Gaussian copula] correlation for tranches. The
analogy is not entirely correct for a variety of reasons. Without discussing the
more fundamental ones we simply observe that, from the practical standpoint,
while in the equity option world we set σ = σ(K), in the correlation world
ρ = ρ(Trk) = ρ(Ak, Dk). Thus inter- and extrapolation can be used in the
former to determine volatilities of non-quoted strikes, but a similar procedure
is not possible for the latter.

This is precisely the drawback that the base correlation idea was designed to
address. Additivity of [expected] tranche loss means that for a [A,D] mezzanine
tranche,

EL(A,D) = EL(0, D)− EL(0, A). (1)

Therefore any mezzanine tranche can be decomposed into a difference of eq-
uity (or “base”) tranches, and prices of successive equity, mezzanine and senior
tranches can be remapped to a series of equity tranche prices by bootstrapping.
This means that unlike the original notion of implied (often called compound)
correlation, we can define base correlation as a function of detachment point
only. To this effect, given the prices for the equity [0, A] and mezzanine [A,D]
tranches, ρ(A) is such that it reprices [0, A] and ρ(D) is such that EL[0, D; ρ(D)],
combined with EL[0, A; ρ(A)] via (1), will reprice [A,D]. A more detailed de-
scription can be found in the original publication [9] or in [10]. Now we are
much closer with the implied volatility analogy, since for an arbitrary [A′, D′]
tranche we can write

EL(A′, D′) = EL(0, D′; ρ(D′))− EL(0, A′; ρ(A′)), (2)

which can be calculated if we find ρ(A′) and ρ(D′) from the quoted attachment-
detachment points via a suitable interpolation scheme.

As practitioners sought to explore the implied volatility analogy, a number
of important flaws in the base correlation framework were uncovered. Most
importantly, tranche expected losses calculated using base correlations (with
suitable interpolation, as required) are not consistent. It is possible within the
framework to have expected loss of a more senior tranche to be larger than
that of a more junior tranche (“capital structure arbitrage”); and for the same
tranche, the expected loss at a later date can be smaller than at an earlier date
(“maturity arbitrage”). While not arbitrages in the strict market sense (there
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is no trading in expected loss), these inconsistencies mean that base correlation-
implied loss surfaces (maturity by detachment point) may in general produce
arbitrageable prices, whereby a riskier tranche will be assigned a smaller fair
spread.

For a theoretically inconsistent construction, base correlations enjoyed re-
markable popularity in the industry: for a long time it was considered market
standard, and every player in the credit correlation trading business had an
implementation of the framework. In our opinion, there are two main reasons
behind this. First, base correlations is a modification of the one-factor Gaus-
sian copula model, which was the approach of choice before 2003. Hence base
correlations were “quickest to market” in terms of both model development and
systems implementation. Second, base correlations fit liquid tranche markets
exactly, for all maturities, indices and observation dates1. This highly desirable
feature could not be matched by the models trying to capture the “correlation
skew”, from various extensions of the Gaussian copula to other copula function-
based approaches and even dynamic models. Thus, while a lot of quantitative
research effort was put into developing new skew-consistent models, none of
them were able to completely depose base correlations.

This serves as the motivation for the current paper to take the base correla-
tion loss surface as a starting point and explore the possibility of removing the
internal inconsistencies (arbitrages) without spoiling the market fit too much.
Our approach produces a sequence of full portfolio loss distributions at several
horizons, from valuation date to maturity, each of which is consistent with base
correlation-implied expected losses for liquid tranches to the largest possible de-
gree. Since valid loss distributions always produce arbitrage-free prices, subject
to certain time monotonicity conditions, the problem reduces to that of finding
a set of loss probabilities subject to linear constraints given by base correlation-
implied tranche expected losses. Similar approaches were taken in [6, 13, 17, 19],
where formulations are very similar to the one we give in Section 3 below.
While [13] only discusses feasibility, the other papers only use base correlations
for liquid maturities and interpolate in time, which can introduce spurious ma-
turity arbitrage and/or lead the resulting prices uncontrollably away from the
market.

The rest of the paper is organised as follows. In Section 2 we give an account
of the expected loss arbitrages occurring in the “classical” base correlations
methodology. Section 3 gives a fixed-horizon formulation of the problem in terms
of a loss distribution (density), including a procedure for removing arbitrage
in the loss dimension and a recipe for generating a feasible initial guess. After
discussing an important limitation in handling maturity arbitrage, we introduce
an equivalent formulation in terms of cumulative loss probabilities in Section 4,
which allows us to solve for the whole loss surface, arbitrage-free in both loss and
maturity. Section 5 gives numerical examples, demonstrating the quality of fit
of the modified loss surface to the original market prices of standard tranches,

1Problems with CDX.IG 5Y and 7Y 15-30% tranches have emerged early in 2008, but as
we argue later, they are not caused by a choice of correlation model per se.
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as well as model-implied non-standard tranche prices and base correlations.
Concluding remarks appear in Section 6.

We conclude the introduction with a brief discussion of CDO tranche pricing
and loss surfaces. The “CDS analogy” for synthetic tranche pricing is presented,
e.g., in [8, p. 40]. The idea is to build a term structure of tranche survival
probabilities:

SP (A,D)(t) = 1− E [(L(t)−A)+]− E [(L(t)−D)+]
D −A

, (3)

where L(t) is the portfolio loss at time t. Then the price (e.g., PV or fair spread)
of the tranche is the same as the corresponding price of a credit default swap
of a fictitious name with the same survival probability term structure and zero
recovery (as in, e.g., [11]).

We loosely define a “loss surface” as the profile of the equity tranche expected
loss function EL(0,K)(t) for various strikes (detachment points) K ∈ [0, 100%]
and time horizons t ∈ (0, Tmaturity]. Given a loss surface, we can use (1), (3)
and the CDS analogy to price any tranche of the given portfolio.

2 Inconsistencies in Base Correlations

While looking like an extension to the Gaussian copula model, base correlations
in fact introduce inconsistencies and generic flaws.

The parameter ρ represents correlation between defaults of individual names,
and is therefore a characteristic of the whole portfolio. Using different corre-
lations for different parts of the capital structure lacks theoretical foundation:
since the order of defaults is not known, it is not clear which default correlation
to use for any given name in, say, a times-to-default simulation. This breaks the
mathematical basis of the Gaussian copula framework and must be one of the
main reasons why base correlations were not well-received by the credit quant
community.

Mathematical considerations aside, there are problems with base correlations
from the financial point of view. A good systematic critique can be found
in [20]. Below we focus on the most important problem which, in our opinion,
is implied arbitrage opportunities. Absence of arbitrage for CDO tranches can
be formulated as an imperative for the exposure to any band of portfolio losses
to have a non-negative cost: the fair premium for buying protection on any
tranche can never be negative, i.e., one cannot be paid to go long protection.
Any of the following easily verifiable properties reflects this concept:

• fair spread for fixed-width mezzanine tranches is decreasing in subordina-
tion;

• fair spread for equity tranches is decreasing in thickness (or detachment
point);

• expected loss of any mezzanine tranche is positive;
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• etc.

(Strictly speaking, we cannot theoretically rule out the possibility of zero proba-
bility for some loss levels, so we should really be saying “non-decreasing” instead
of “increasing”, etc.) Arbitrage opportunities in the markets indicate that one
or both of the following is true for the loss surface:

• EL(0,Ki)(t) < EL(0,Kj)(t) for Ki ≥ Kj (capital structure arbitrage)

• EL(0,K)(ti) < EL(0,K)(tj) for ti ≥ tj (maturity arbitrage)

While these two conditions are not actually equivalent to arbitrage opportunities
existing in the tranche market (expected losses are not tradable, they are only
inputs to pricing algorithms), we adopt the convention to call them “arbitrages”
for notational simplicity. (We recognise that “indications of arbitrage” or even
“model inconsistencies” would be more accurate terminology.)

2.1 Capital structure arbitrage

Looking at the fundamental formula for mezzanine tranche expected loss with
base correlations (2), we observe that, since equity tranche loss goes down with
correlation, a sufficiently steep upward-sloping base correlation curve (i.e., very
loosely speaking, ρ(D)� ρ(A)) may result in EL[0, A; ρ(A)] > EL[0, D; ρ(D)],
making EL[A,D] < 0.

While one could reasonably expect never to see this happen for liquidly
traded mezzanine tranches (although see Table 2 below), controlling this be-
haviour for non-standard, especially thin tranches, is very hard. Interpolat-
ing in correlations is common practice; however, the resulting loss distribution
(implied by the Breedan-Litzenberger methodology, along the lines of [14]) for
any of the popular methods is not arbitrage-free. This is evident from Ta-
ble 1 of mezzanine tranche spreads, where we have tried linear, cubic spline
and monotonicity-preserving interpolation schemes to build the corresponding
base correlation curve from the values for standard strikes. More sophisticated
shape-preserving interpolation schemes used directly on tranche expected loss,
rather than base correlations, give more promising results, but they tend to be
more implementation-intensive (speed and/or storage) and in any case, fail to
resolve the time dimension issues that we outline below.

2.2 Maturity arbitrage

So far we have only looked at the performance of base correlations across the
capital structure. This makes sense since, just like a typical copula model,
base correlations are built on fixed horizons: given the probabilities of default
for individual names before a certain date, we can calculate expected losses of
tranches for this date. However, as we pointed out at the end of Section 1,
tranche pricing requires building a whole term structure of losses – an object
which is commonly called the “tranche curve”, which is, roughly, a cross-section
of the loss surface for fixed K.
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Tranche Fair spread, bp
Attach Detach Linear Spline Monotonic ExpLoss

13% 14% 76.72 83.05 87.05 93.75
14% 15% 60.98 75.81 91.62 88.86
15% 16% 118.19 70.07 88.12 75.01
16% 17% 104.46 64.85 74.07 62.17
17% 18% 93.50 61.80 63.54 57.05
18% 19% 85.20 61.49 56.91 55.17
19% 20% 77.85 61.97 52.43 54.41
20% 21% 69.74 60.69 47.71 54.06
21% 22% 60.38 56.71 41.56 53.88
22% 23% 50.67 51.46 35.11 53.79
23% 12% 42.00 47.55 33.89 53.74
24% 13% 36.04 48.24 37.18 53.70
25% 26% 32.41 50.49 42.50 53.67

Table 1: CDX.IG9 5Y thin tranche spreads, different interpolations (14-Jan-08).

The standard way of building these tranche curves is to use term structures of
individual default probabilities to calculate tranche expected losses at a strip of
dates. Unfortunately, there are even fewer liquid maturities than liquid strikes:
typically, only 5Y, 7Y and 10Y index tranche markets can be found. Moreover,
as in the Gaussian copula model, when pricing a 5Y tranche, say, we should use
the same correlation parameters for all intermediate dates where the tranche
expected losses are calculated, from the short end all the way to 5Y. This often
introduces problems, best illustrated by the example below.

We calculated expected losses for equity tranches corresponding to standard
detachment points of the CDX.IG index, using 5Y parameters, at several dates
(Table 2). Although nothing stands out at maturity, for shorter horizons the 5Y
base correlations produce arbitrageable expected losses – and the shorter the
horizon, the more pronounced the effect. While it is hardly possible to realise
these arbitrage opportunities (over five years these differences “even out” and
there are no liquid markets in shorter maturities), this behaviour demonstrates
yet another dimension of the fundamental problems about the base correlation
framework.

Attempts to smoothen out this behaviour (e.g., cap tranche expected losses
at 1 and floor them at 0) do not help, either. Table 3 shows that the expected
loss of a 31-33% tranche has a dip around 20-Mar-2012. The framework seems
to imply that holding this tranches for 5 years and 3 months is less risky than
holding it for just 5 years, which is clearly nonsensical. Note that this behaviour
could hardly have been predicted from the corresponding base correlation values.

It is important to note here that even though liquid tranche quotes are for
a given maturity, we do not actually have information about tranche expected
losses at this maturity. All we have from the market is a price (spread or
upfront), though a term structure of tranche expected losses can be mapped to
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Date Tranche expected loss
0-3% 3-7% 7-10% 10-15% 15-30% 30-60%

20-Dec-07 2.0345% -0.0017% -0.0014% -0.0021% -0.0019% 0.0018%
20-Mar-08 5.5264% -0.0051% -0.0033% -0.0062% -0.0043% 0.0061%
20-Jun-08 8.9588% 0.0009% -0.0015% -0.0089% -0.0058% 0.0113%
20-Sep-08 12.4436% 0.0232% 0.0051% -0.0116% -0.0077% 0.0203%
20-Dec-08 15.8583% 0.0721% 0.0198% -0.0117% -0.0083% 0.0317%
20-Mar-09 19.2266% 0.1562% 0.0458% -0.0087% -0.0062% 0.0472%
20-Jun-09 22.6186% 0.2879% 0.0871% 0.0000% -0.0027% 0.0677%
20-Sep-09 25.9457% 0.4725% 0.1458% 0.0158% 0.0066% 0.0911%
20-Dec-09 29.1615% 0.7123% 0.2235% 0.0396% 0.0173% 0.1198%
20-Mar-10 32.6173% 1.0455% 0.3332% 0.0766% 0.0380% 0.1549%
20-Jun-10 36.0908% 1.4707% 0.4757% 0.1281% 0.0626% 0.1982%
20-Sep-10 39.4889% 1.9852% 0.6514% 0.1955% 0.0967% 0.2467%
20-Dec-10 42.7630% 2.5842% 0.8600% 0.2791% 0.1409% 0.2998%
20-Mar-11 45.9361% 3.2726% 1.1044% 0.3807% 0.1881% 0.3617%
20-Jun-11 49.0745% 4.0697% 1.3935% 0.5048% 0.2510% 0.4292%
20-Sep-11 52.0999% 4.9598% 1.7236% 0.6503% 0.3270% 0.5023%
20-Dec-11 54.9764% 5.9292% 2.0912% 0.8167% 0.4060% 0.5852%
20-Mar-12 57.9053% 7.0463% 2.5214% 1.0146% 0.5015% 0.6794%
20-Jun-12 60.7377% 8.2722% 3.0045% 1.2414% 0.6190% 0.7790%
20-Sep-12 63.4381% 9.5903% 3.5367% 1.4964% 0.7443% 0.8898%
20-Dec-12 65.9783% 10.9798% 4.1114% 1.7770% 0.8758% 1.0111%

Table 2: Expected losses of standard tranches (CDX 5Y, 29-Oct-07).

Strike Base 20-Dec-2011 20-Mar-2012 20-Jun-2012

corr Equity Mezz Equity Mezz Equity Mezz

27% 84.59% 0.09465 9.465% 0.10140 10.140% 0.10836 10.136%
29% 87.42% 0.08836 0.344% 0.09466 0.371% 0.10123 0.498%
31% 90.08% 0.08286 0.312% 0.08876 0.315% 0.09495 0.387%
33% 92.85% 0.07786 0.034% 0.08338 0.003% 0.08921 0.021%
35% 95.49% 0.07336 -0.090% 0.07853 -0.160% 0.08402 -0.150%

Table 3: CDX.IG9 tranche expected losses using 10Y base correlations.

it. Therefore when we build a base correlation curve for a given maturity, we
fix tranche expected losses not only for the maturity, but for all intermediate
horizons as well. Thus we inherit the behaviour of this framework through time
as well as at maturity. This will be important when we build our arbitrage-free
loss surfaces in later sections.

2.3 Remark on scope

In this paper we do not deal with a few other sources of arbitrage, which have
become more apparent in the wake of the senior and super-senior unwinds. First,
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it is occasionally impossible to solve for the 5Y and 7Y CDX.IG base correlation
at 30%, the highest quoted detachment point. Second, the super-senior tranche
price implied by the index and all junior prices can come out as quite different
from what is quoted in the market for this tranche. The reason why we do
not devote specific attention to these problems is that we see them as coming
from a different source altogether – namely, the price of systemic risk. As it
was demonstrated in [13], a fixed 40% recovery assumption implies a tail of the
distribution that is too “short”: it caps portfolio losses at 60%, while the market
does not seem to agree with this. This can be dealt with by introducing either
a systematic shock, in the flavour of [16], or stochastic recovery. In other words,
this can be solved by adding an extra paramter set, which does not necessarily
relate to correlation. Thus these problems do not appear to be specific to base
correlations, and are therefore outside of the scope for this paper. We believe
that a relatively simple stochastic recovery framework, such as introduction of
several global recovery regimes, will serve as sufficient extension to handle these
issues and still be able to apply our ideas below to the general case. Two recent
papers [1, 5] describe the application of stochastic recovery in some detail.

3 Loss Distribution Formulation

Let 0 = K0 < K1 < K2 <, . . . , < Km < 100% be an arbitrary sequence of de-
tachment points (strikes). The following conditions for the corresponding equity
tranche expected losses ELj = EL(0,Kj), must be satisfied for the resulting
loss surface to be arbitrage-free:

• positivity/boundedness : 0 ≤ ELj ≤ EL(0, 100%) ≤ 1; ELj ≤ Uj (Uj is
the strike Kj rescaled in terms of loss units – see definition below);

• monotonicity : ELj ≥ ELj−1;

• concavity : ELj − ELj−1

Uj − Uj−1
≥ ELj+1 − ELj

Uj+1 − Uj ;

Often a fourth condition of portfolio expected loss conservation is added; we
discuss it in more detail below.

In practice, checking these conditions for all tranches (or even for a suitable
“basis”) is too cumbersome a task. As we demonstrated in the previous section,
base correlations do not, in general, produce a loss surface consistent with the
above, even though it may be consistent for just the “standard” detachment
points, or liquid tranches. Fortunately, for a sufficiently granular set of strikes
Kj , these conditions are equivalent to the existence of a valid loss distribution,
i.e., one with non-negative, unit-mass density. Therefore a suitable equivalent
mathematical formulation in terms of the loss probabilities, guaranteeing the
solution of the corresponding problem to satisfy the no-arbitrage conditions, is
useful. While we note that these necessary conditions are only dealing with
the loss dimension and ignore the time behaviour, understanding how a valid
fixed-horizon loss distribution can be produced is nevertheless an important first
step.
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3.1 Fixed horizon

We assume that there are n obligors in the portfolio, so the portfolio loss at any
time horizon t can be written as

L(t) =
n∑
k=1

Nk(1−Rk)1{τk≤ t} (4)

Here Nk, Rk and τk denote, respectively, the notional, recovery rate and default
time of name k, and 1 is the indicator function (in this case, of the default event
for name k).

The common assumption of fixed recovery rates leads to a discrete loss dis-
tribution. (This will also be true for a class of stochastic recovery models with
discrete support.) If all notionals and recoveries are the same (which is usu-
ally the case for standard indices), then each default results in an equal loss of
l = (1 − R̄)N̄ to the portfolio, so that the support of the loss distribution is
{0, l, 2l, . . . , nl}, a finite set. For more complicated portfolio structures it is still
possible, in most practical cases, to find a loss unit u, such that (1−Rk)Nk = u·lk
for all k. In this case, the support of the loss distribution is comprised from
various combinations of {0, l1u, l2u, . . . , lnu}. Usually u is the greatest common
divisor of all individual losses, possibly with some truncation. For a homoge-
neous portfolio the distribution size is n+1. Below we focus on the homogeneous
case and discuss modifications for more general portfolios later in Section 4.4.

Consider the following formulation. Given a set of tranches and their ex-
pected losses (to a given time horizon), find a loss distribution at this horizon
that is consistent with these expected losses and conserves the total expected
loss on the whole portfolio of single names. The loss distribution is simply the
set of all probabilities, i.e., the vector

{P0, P1, . . . , Pn} : Pk(t) = Prob{L(t) = ku}. (5)

Denote as before the strikes of the given tranches by 0 = K0 < K1 < K2 <
, . . . , < Km < 100%, so that there are m tranches. We note that there are
two equivalent approaches: either take m equity tranches [0,Kj ], j = 1, . . . ,m,
or look at a contiguous sequence of equity and mezzanine tranches [Kj−1,Kj ],
j = 1, . . . ,m: in a loss-preserving model, both approaches produce the same
loss surface. We choose the equity tranche sequence because it comes more
naturally in the base correlation framework, where each equity tranche is priced
with its own flat correlation. The senior-most detachment point is usually set
to the maximum possible loss Kmax = u/N̄ = 1− R̄.

Following the definition (4) of the portfolio loss, we define the expected loss
of the j-th equity tranche as

ELj(t) = E
[
min(L(t),Kj)

]
,

and the expected loss on the whole portfolio as

µ(t) =
n∑
k=1

Nk(1−Rk) pk(t).
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(We suppress the time dependence for most of the paper, when we are dealing
with fixed horizons only.)

We now reduce the problem to an exercise in finite optimisation. Note that
there are no obvious restrictions on the shape of the distribution, other than
fitting the expected losses. However it may be advisable to control its shape,
for example, by forcing the distribution to be close to a given one or demand-
ing it to be smooth (see, e.g., ideas in [6]). A simple measure of distribution
“smoothness” is the sum of square differences between adjacent probabilities. In
this case we can formulate the optimisation problem as follows: find a vector of
n+ 1 loss probabilities, such that the distribution is as smooth as possible; pre-
serves the total expected loss on single names; and produces the given tranche
expected losses. The formulation described in [6] is closest to ours, even though
the entropy-based objective function the authors adopt precludes them from
using quadratic programming. The time dimension and the issue of feasibility
is also handled differently.

Before we write down the formulæ, we introduce rescaling of the tranche
strikes in terms of loss units (recall the quantity u discussed earlier in this
section). Denote

Uj = Kj
nN̄

u
, kj = [Uj ] = max{i ∈ Z : i ≤ Uj}.

For any discrete loss distribution, the expected loss of an equity tranche detach-
ing at K% or U loss units is

EL(0, U) =
[U ]∑
j=1

jPj + U

n∑
j=[U ]+1

Pj . (6)

We can thus write

f(P ) =
1
2

n∑
j=2

(Pj − Pj−1)2 → min (7)

s.t. : 0 ≤ P1, . . . , Pn ≤ 1,
n∑
j=1

jPj = µ̃ (8)

k1∑
j=1

j Pj + U1

n∑
j=k1+1

Pj = EL1,

k2∑
j=1

j Pj + U2

n∑
j=k2+1

Pj = EL2,

. . .
km∑
j=1

j Pj + Um

n∑
j=km+1

Pj = ELm.
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The µ̃ in (8) is the portfolio expected loss rescaled in terms of loss units. Note
that the probability of no loss, P0, does not appear – we recover it later from
the condition that all probabilities must sum to unity.

The problem above is a bounded quadratic programme, which is guaranteed
to have a unique global solution if only the Hessian in (7) is positive definite
and the constraints are feasible. The Hessian has the following structure:

H(f) =
∂f

∂Pi∂Pj
=


1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

...
. . .

...
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1

 ,

and its positive definiteness is straightforward to check (all principal minors are
equal to 1). We therefore turn to the issue of feasibility.

3.2 Constructing a feasible initial guess

For a typical portfolio and tranche structure, we will have m � n, i.e., much
fewer constraints (tranches) than variables (probabilities). However the impor-
tance of getting a good initial guess should not be underestimated. An arbitrary
distribution, such as one coming from a different model, can be so far from sat-
isfying the expected loss constraints that the optimiser will fail to find a valid
search direction. For larger, more computationally intensive problems, such as
very heterogeneous portfolios, a good initial guess may reduce the running time
considerably. Therefore we devote some time to finding a feasible initial guess2.

The simplest idea is to use the leanest possible distribution, i.e., the one
that has only the absolute minimum number of non-zero probabilities. Since we
have m+ 1 constraints, we need at least m+ 1 probabilities to fit them. We use
the maximum loss probability, Pn, to tie up the total portfolio expected loss.
Away from that point, we assume that Pj = 0 for j 6= ki, i = 1, . . . ,m. In other
words, we try to fit the tranche expected losses by putting probability mass at
the node just below the tranche strike. This simplifies the constraint equations
in (7):

k1Pk1 + U1

m∑
i=2

Pki
+ U1Pn = EL1,

k1Pk1 + k2Pk2 + U2

m∑
i=3

Pki + U2Pn = EL2,

. . .

k1Pk1 + . . .+ kmPkm
+ UmPn = ELm,

m∑
i=1

kiPki
+ nPn = µ̃. (9)

2We thank Hans-Jürgen Brasch for useful suggestions and discussions on the subject of
this section.
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Solving this system does not present any difficulty. By taking the difference of
each of the equations with the previous one (except for the very first equation,
which is left intact) we obtain a system in upper triangular form:

k1Pk1 + U1

(
m∑
i=2

Pki
+ Pn

)
= EL1,

(k2 − U1)Pk2 + (U2 − U1)

(
m∑
i=3

Pki
+ Pn

)
= EL2 − EL1,

. . .

(km − Um−1)Pkm
+ (Um − Um−1)Pn = ELm − ELm−1,

(n− Um)Pn = µ̃− ELm.

The solution can be represented by the following recursive formulæ:

Pn = qm+1; Pki
=
qi −

m∑
j=i+1

Pkj − Pn

di
, 1 ≤ i ≤ m, (10)

where we have defined

dj =
kj − Uj−1

Uj − Uj−1
; qj =

ELj − ELj−1

Uj − Uj−1
= EL

(
Kj−1,Kj

)
, 1 ≤ j ≤ m,

and
qm+1 =

µ̃− UmELm
n− Um

= EL(Km,Kmax).

Note the interpretation of the right-hand sides as the expected losses on the
corresponding mezzanine tranches.

We note the special case U1 = k1, i.e., when the first liquid detachment point
falls on a loss distribution node. The first equation in (9) then reduces to

U1

m∑
i=1

Pki
+ U1Pn = U1(1− P0) = EL1,

so that Pk1 drops out and P0 comes in. We will then need to recover Pk1 from
the condition

∑
Pj = 1, as we do with P0 in the main case below.

The set of probabilities (10), together with

P0 = 1−
m∑
i=1

Pki − Pn,

will define a feasible initial distribution if we can show that 0 ≤ Pki
≤ 1 for all

i = 1, . . . ,m and the same is true for Pn and P0. This follows by construction: we
simply take the probability mass between any two adjacent ki’s and concentrate
it at the right endpoint.
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Indeed, the first two no-arbitrage conditions (boundedness and monotonic-
ity) guarantee that the percentage expected losses of all mezzanine tranches are
between 0 and 1. This immediately implies that 0 ≤ Pn ≤ 1. We then keep
moving to the left, looking at each Pki

in backward succession. Recall that by
definition of the expected loss of mezzanine tranche

qi =
ki∑

j=ki−1+1

j − Ui−1

Ui − Ui−1
Pj + P{L > ki}

≤ ki − Ui−1

Ui − Ui−1
P{ki−1 < L ≤ ki}+ P{L ≥ ki},

so that, for example, for the senior-most detachment point Km we have

Pkm
≤ P{km−1 < L ≤ km}+

P{L ≥ km} − Pn
dm

= P{km−1 < L ≤ km}

since in the given construction, the tail of the distribution is concentrated at
n, as we have established at the previous step. Thus Pkm

is bounded by the
probability mass contained between the points Km−1 and Km. We can follow
the same argument for all subsequent Ki, i < m, to establish the correspondence
between Pki and P{Ki−1 < L ≤ Ki}. This guarantees the validity of the
constructed loss distribution, as long as the originally given tranche expected
losses satisfy the no-arbitrage conditions. We demonstrate the connection in
more detail below.

Using (6), we take the difference between expected losses of equity tranches
detaching at adjacent loss grid points – say, k and k + 1 loss units:

EL(0, k+1)−EL(0, k) = (k+1)Pk+1 +(k+1−k)
n∑

j=k+2

Pj−kPk+1 =
n∑

j=k+1

Pj .

This is just the tail probability beyond the upper strike. If we take the second
difference now, we obtain

EL(0, k + 1)− 2EL(0, k) + EL(0, k − 1) =
(
EL(0, k + 1)− EL(0, k)

)
−

(
EL(0, k)− EL(0, k − 1)

)
=

n∑
j=k+1

Pj −
n∑
j=k

Pj = −Pk.

This makes the no-arbitrage conditions clear: they simply guarantee the positiv-
ity of both the cumulative loss distribution function and the loss probabilities
themselves. It also demonstrates why these conditions are sufficient for the
specific loss distribution that we have just constructed (i.e., the feasible initial
guess) to be valid.

Our final note is to observe that the given interpretation of the first and
second differences of the expected loss function gives an intuitive geometric
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visualisation of the initial guess. From the above formulæ it is evident that the
probability of a given loss can be zero only when the second difference of the
expected loss function at this gridpoint vanishes – in other words, if the expected
loss function is linear around this point. Therefore in our construction, the
expected loss is piecewise linear, switching at the points k1, . . . , km, n. Therefore
the initial construction corresponds to a piecewise linear interpolation of tranche
expected loss, with the subtle point that the nodes are not the given strikes
K1, . . . ,Km, but the closest loss gridpoints just below these strikes.

3.3 Tackling arbitrage

The previous section presented a recipe for constructing a valid fixed-horizon
loss distribution from an arbitrage-free tranche expected loss sequence for a
fixed horizon. We showed how this sequence can be used to construct a feasible
initial guess, to be plugged into the quadratic programme (7) to obtain an
arbitrage-free loss distribution that fits the given expected losses.

However examples in Section 2.2 suggest that even for a sequence of liquid
tranche detachment points, the corresponding tranche expected losses may not
be consistent, i.e., present arbitrage, especially for shorter horizons.

In search of a solution in these cases, we look at the expected loss profiles
obtained in practice and try to single out the points where arbitrage-free condi-
tions get violated most frequently. We observe that most of the time arbitrages
emerge at the senior end of the capital structure. Often the total expected loss
of all portfolio constituents puts too much loss into the part of the loss distribu-
tion above the senior-most quoted detachment point. This can even happen at
maturity and is consistent with the findings in [13]. For shorter horizons, it can
also be the case that senior and even mezzanine losses are mis-aligned. In all
cases we have observed, however, it was always possible to fit the equity price
and usually also the junior mezzanine, without introducing arbitrage.

Our recipe is therefore to “filter” the given tranche expected losses and only
include, as the constraints in (7), the ones that do not violate no-arbitrage
conditions. Thus at any given horizon we may end up with fewer than m + 1
equality constraints in the optimisation problem. This results in divergence of
model-implied liquid tranche prices from the original market (usually at the
senior end), since the loss surface is no longer consistent with base correlations
at all intermediate dates. In practice the discrepancies in tranche losses turn out
to be relatively small. This is due to the fact that they tend to occur on just a
handful of dates close to valuation date, while the tranche market maturities are
considerably longer (5 years at the least). Consequently the resulting tranche
curves – and prices – are fairly close to the original values used to back out the
base correlation curve. We demonstrate this with several examples later.

3.4 Time dimension revisited

So far we have been able to produce a sequence of fixed-horizon loss distributions
that are consistent with as many liquid tranche expected losses as possible at
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each horizon. However putting this sequence together will only produce tranche
curves if their behaviour in time is correct (i.e., arbitrage-free) as well. In other
words, we need to ensure that expected losses of all possible tranches of the
portfolio increase in time.

The bad news is that in the current formulation given by (7) this is im-
possible to check. Individual loss probabilities Pk (i.e., the values of the loss
distribution at any node) do not have to be monotonic in time for tranche losses
to keep going up – the corresponding condition, though sufficient for tranche
loss monotonicity, is clearly not necessary and in fact, too restrictive3. Thus
the formulation in terms of loss probabilities Pk is not easily extendable in the
time dimension. A modification is required.

4 Cumulative Loss Formulation

Fortunately, while a no-arbitrage condition in time is problematic for the loss
density, it is much more obvious in cumulative loss distribution, where we can
write

P{L(ti) ≤ x} ≥ P{L(tj) ≤ x} for tj > ti. (11)

In other words, cumulative loss to any point is non-increasing in time. Thus if
we are able to recast the formulation (7) in terms of cumulative probabilities
Qk = P{L ≤ ku}, an extra monotonicity constraint between adjacent horizon
will ensure that arbitrage in time cannot emerge.

Since the loss distribution is discrete, we have

Q0 = P0, Qk =
k∑
j=0

Pj , 1 ≤ k < n, Qn = 1,

so that
P0 = Q0, Pk = Qk −Qk−1 for k > 0,

and therefore for an equity tranche expected loss (6) we have

EL(0, U) =
[U ]∑
j=1

j
(
Qj −Qj−1

)
+ U(1−Q[U ]). (12)

The first term can be rearranged more conveniently as

[U ]∑
j=1

j
(
Qj −Qj−1

)
= [U ]Q[U ] −

[U ]−1∑
j=0

Qj .

3It is most likely to be violated in pairs of adjacent dates, where we have dropped or
reinstated an extra tranche expected loss condition.
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This enables us to rewrite any of the equity tranche expected loss equations as
follows

kiQki
−
ki−1∑
j=0

Qj + Ui
(
1−Qki

)
= ELi ⇐⇒

ki−1∑
j=0

Qj +
(
Ui − ki

)
Qki

= Ui − ELi,

for any i between 1 and m.
We also need to add extra constraints to the new formulation: in addition

to the usual conditions of probabilities being bounded between 0 and 1, the
cumulative loss probabilities should also be monotonic: 0 ≤ Qj −Qj−1 ≤ 1 (so
that 0 ≤ Pj ≤ 1). The dimensionality of the problem stays the same at n, as it
is now the last probability, Qn, that drops out (as it must be equal to 1), while
Q0 figures in the equations. The objective functions also change from

f(P ) =
1
2

n∑
j=1

(Pj − Pj−1)2

to

F (Q) =
1
2
(
Q1− 2Q0

)2 +
1
2

n−2∑
j=1

(
Qj−1− 2Qj +Qj+1

)2 +
1
2
(
Qn−2− 2Qn−1 + 1

)2
making the Hessian

H(F ) =
∂F

∂Qi∂Qj
=



5 −4 1 0 0 · · · 0 0 0 0 0
−4 6 −4 1 0 · · · 0 0 0 0 0
1 −4 6 −4 1 · · · 0 0 0 0 0

...
...

. . .
...

...
0 0 0 0 0 · · · 1 −4 6 −4 1
0 0 0 0 0 · · · 0 1 −4 5 −2
0 0 0 0 0 · · · 0 0 1 −2 1


.

We thus have the following formulation in cumulative loss probabilities:

F (Q) → min (13)
s.t. : 0 ≤ Q0, Qj ≤ 1, 0 ≤ Qj −Qj−1 ≤ 1 , j = 1, . . . , n− 1,

k1−1∑
j=0

Qj +
(
U1 − k1

)
Qk1 = U1 − EL1,

. . .
km−1∑
j=0

Qj +
(
Um − km

)
Qkm = Um − ELm

n−1∑
j=0

Qj = n− µ̃.
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A solution to the problem (13) gives a vector of cumulative loss probabilities
{Q0, . . . , Qn−1}, such that the corresponding probabilities

P0 = Q0, P1 = Q1 −Q0, . . . , Pn−1 = Qn−1 −Qn−2, Pn = 1−Qn−1

form a valid loss distribution, which is consistent with the tranche expected
losses at the given time horizon. In other words, this is an exact analogue of
the problem (7) in the cumulative loss space.

To complete the presentation of the framework, we need to address several
technical points.

4.1 Feasible initial guess

An example initial guess that satisfies all constraints can be constructed using
the same idea as in Section 3.2, where we set all but m+ 1 loss probabilities to
zero. The equivalent structure here is piecewise flat cumulative loss with m+ 1
“steps”. To this end, we seek an initial guess in the following form:

Q0 = Q1 = . . . = Qk1−1, Qk1 = . . . = Qk2−1, . . . , Qkm
= . . . = Qn−1,

so that the loss distribution is completely determined by setting m + 1 proba-
bilities Q0, Qk1 , . . . , Qkm . In this case, the equality (expected loss) constraints
are reduced to

k1Q0 +
(
U1 − k1

)
Qk1 = U1 − EL1,

k1Q0 + (k2 − k1)Qk1 +
(
U2 − k2

)
Qk2 = U2 − EL2,

. . .

k1Q0 +
m−1∑
j=1

(
kj+1 − kj

)
Qkj

+
(
Um − km

)
Qkm

= Um − ELm,

k1Q0 +
m−1∑
j=1

(
kj+1 − kj

)
Qkj +

(
n− km

)
Qkm = n− µ̃.

To solve the above, we subtract from each equation the previous one, leaving the
first equation intact. Some rearrangement of terms yields the following system

U1Q0 + (U1 − k1) ∆Qk1 = U1 − EL1,

∆U2Qk1 + (U2 − k2) ∆Qk2 = ∆U2 − (EL2 − EL1),
. . .

∆UmQkm−1 + (Um − km) ∆Qkm
= ∆Um − (ELm − ELm−1),

(n− Um)Qkm
= (n− Um)− (µ̃− ELm),

where we have denoted ∆Uj = Uj − Uj−1 and ∆Qkj
= Qkj

− Qkj−1 . The
solution can be found recursively:

Qkm
= SP (Km,Kmax), Qkj

= SP (Kj ,Kj+1)− (1− dj+1) ∆Qkj+1 . (14)
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In the above we recall the definition of the survival probability of a tranche
attaching at A and detaching at D percent as

SP (A,D) = 1− EL%(A,D) = 1− EL(0, D)− EL(0, A)
D −A

and, as in (10)

dj+1 =
kj+1 − Uj
Uj+1 − Uj

, j ≥ 0,

with K0 = 0%.
Since by definition, kj = [Uj ] ≤ Uj , we have dj+1 ≤ 1; also, if the standard

tranches are at least one loss thick (a constraint which is comfortably satisfied
by any of the current liquid tranche markets), then dj+1 ≥ 0. In this case we
have the following intuitive bounds on the cumulative loss probabilities:

SP (Kj−1,Kj) ≤ Qkj ≤ SP (Kj ,Kj+1), j = 1, . . . ,m,

where we set K0 = 0% and Km+1 = Kmax.
The second equation in (14) implies that

∆Qkj+1 =
1

dj+1

(
Qkj+1 − SP (Kj ,Kj+1)

)
,

which gives the desired recurrence relation.
The obtained probabilities satisfy the expected loss constraints by definition.

They will also be non-negative and monotonically increasing (non-decreasing),
as long as the same is true for the tranche survival probabilities. The latter,
in its turn, is guaranteed if there is no arbitrage at the given horizon. The
next section summarises the recipes for handling arbitrage, some of which were
described in Section 3.3.

4.2 Arbitrage

Capital structure arbitrages arise when the tranche survival probabilities de-
crease with seniority at a given fixed horizon, or are negative. In accordance
with the scheme proposed in Section 3.3, we reduce the number of expected loss
constraints until all of the remaining ones are arbitrage-free. As before, this
means that the corresponding liquid tranches will no longer be exactly repriced
to market, but since the occurrences of such arbitrage are usually few and lim-
ited to short horizons, the practical impact tends to be quite low. Another
possibility is that the arbitrage only occurs in the super-senior part of the capi-
tal structure, so that all the standard mezzanine tranches are repriced, but the
portfolio expected loss is not conserved. In this case we will not be able to start
the recurrence (14) with the super-senior tranche survival probability. Instead,
we can use any value between the senior-most mezzanine tranche survival prob-
ability and 1 as Qkm (as long as it satisfies any additional constraints, such
as the ones we mention below, in connection with arbitrage in time). In any
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case fixed-horizon arbitrage is handled in the current formulation in the same
manner as in the loss distribution formulation of the Section 3.

However, unlike the previous approach, the current setup also gives a way of
removing arbitrage in time. For any two successive time horizons T < T ′, the
fundamental relationship (11) implies that

Qj(T ) ≥ Qj(T ′).

Therefore to enforce no-arbitrage in maturity, it is sufficient to add the cumula-
tive loss distribution at the preceding horizon as the upper bound for the optimi-
sation problem at the given horizon. In other words, the constraint 0 ≤ Qj ≤ 1
should be replaced with 0 ≤ Qj ≤ Q−j , where Q−j is the cumulative loss proba-
bility at the same node at the previous horizon. We can thus solve a sequence of
problems given by (13) for all dates on the portfolio grid in succession, updating
the upper bound with the solution obtained at the previous step.

4.3 Different objective functions

As we have mentioned in Section 3.1, the choice of the objective function in the
optimisation problems (7), (13) is more or less arbitrary. By this we mean that
consistency with the tranche market is guaranteed by the constraints, while the
objective function embeds the “target shape” of the loss distribution, which is
an internal construction that is neither set, nor even observable in the mar-
ket. Different objective functions may produce different loss distributions, ulti-
mately affecting prices of non-standard tranches. Choosing a particular shape
over another one is hard to formalise: since either will fit the liquid tranche
market, there are no “right” or “wrong” shapes. Our choice of the smoothest
distribution may be thought of as a natural first choice; other choices include
entropy-minimising (cf. [6]) distributions and distributions close to a given one.

For the latter, if we would like the shape of the resulting loss distributions
not to deviate too far from a given law, the corresponding objective function
will be

F̃ (Q) =
1
2

n−1∑
j=0

(
Qj −Q(0)

j

)2

. (15)

Here Q(0) represents the target distribution – for example, Q(0)
j = j/n for the

uniform target or Q(0)
j = LCDFΦ, ρ(j/n) for the loss CDF obtained from the

Gaussian copula model with correlation ρ. The dependence of non-standard
tranche prices on the choice of target distributions will be evident from the
examples we give in the next section.

When a target distribution is given, it may be beneficial to modify the pro-
cedure for constructing an initial guess. Instead of a piecewise flat distribution,
one can consider a piecewise flat increment to the target distribution:

Qj = Q
(0)
j + θj ,

19



where θj has the m+1-step structure described in Section 4.1. The i-th expected
loss constraint then reads

k1Q0 +
i−1∑
j=1

(
kj+1 − kj

)
Qkj +

(
Ui − ki

)
Qki = EL

(0)
i − ELi

and the total expected loss constraints becomes

k1Q0 +
m−1∑
j=1

(
kj+1 − kj

)
Qkj

+
(
n− km

)
Qkm

= µ̃(0) − µ̃,

where we use the superscript “(0)” for the quantities calculated from the target
distribution. We can solve for the increments to obtain the following equivalent
of (14):

Qj = Q
(0)
j + θkm

, j ≥ km

Qj = Q
(0)
j + θki , ki ≤ j ≤ ki+1 − 1, i = 1, . . . ,m− 1

with

θkm = SP (Km,Kmax)− SP (0)(Km,Kmax),

θki+1 − θki =
1

di+1

(
θki+1 − SP (Ki,Ki+1) + SP (0)(Ki,Ki+1)

)
,

for i = 1, . . . ,m− 1.
Note that while these probabilities satisfy the expected loss constraints by

construction, verifying the inequality constraints (positivity and monotonicity
in loss and maturity) will either impose restrictions on the target distributions
(via admissible values for mezzanine tranches survival probabilities), or lead
to exclusion of more expected loss constraints during the arbitrage “filtering”
stage. Therefore care must be taken in applying this procedure for constructing
a feasible initial guess.

4.4 Non-homogeneous portfolios

The formulæ presented above are, strictly speaking, only valid for homogeneous
portfolios, such as liquid indices under standard assumptions, where exposures
and recovery rates of all constituents are the same. In mathematical terms, we
have only considered the case when li = 1 for all i = 1, . . . , n, and consequently
n = Lmax ≡

∑
li: the dimension of the optimisation problem (13) is equal to

the number of portfolio constituents. In other words, the support of the loss
distribution consists of all consecutive integers from 0 up to n, the number of
names in the portfolio.

This relationship is violated when we allow different recovery rates and/or
notionals for the constituents. For example, a simple portfolio of two names, one
with notional $10 million and recovery rate 40% and the other with notional $20
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million and recovery 20%, will have very different properties from a homogenous
two-name portfolio. The support of the loss distribution is {0, 3, 8, 11}, since
the loss unit size is $2 million, so that l1 = 3 and l2 = 8. Thus the size
of the distribution is N = 4, but the number of names is n = 2, while the
maximum number of loss units Lmax = 11, which is clearly very different from
the homogeneous case, and we would not be able to use the formulæ above
directly.

To extend the framework to include these cases, which are especially useful
in bespoke portfolios, we introduce a new quantity, λ(j) for j = 0, . . . , N , which
is simply the loss amount (number of loss units) at the j-th node of the loss
distribution. For the homogeneous case, λ(j) = j and λ(N) = n = N = Lmax;
however, in the general case, λ(j) ≥ j and λ(N) = Lmax ≥ N ≥ n. We can
then rewrite the expected loss formula (12) as

EL(0, U) =
[U ]∑
j=1

λ(j)
(
Qj −Qj−1

)
+ U(1−Q[U ])

and rearrange the first term:

[U ]∑
j=1

λ(j)
(
Qj −Qj−1

)
= λ([U ])Q[U ] −

[U ]−1∑
j=0

(
λ(j + 1)− λ(j)

)
Qj .

For consistency, we also need to note that the probabilities Qj in the above are
now understood as Qj = P{L ≤ λ(j)u}.

Consequently, for any i ∈ [1,m], the corresponding tranche expected loss
constraint will have the following form in the general case

ki−1∑
j=0

[λ(j + 1)− λ(j)]Qj + [Ui − n(ki)] = Ui − ELi,

and the portfolio expected loss constraint is

N−1∑
j=0

[λ(j + 1)− λ(j)]Qj = λ(N)− µ̃.

The rest of the analysis can be carried out as before.

5 Numerical results

We present various examples illustrating the performance of the current frame-
work. In the following sections we demonstrate calibration quality, thin index
tranche prices and results for a bespoke portfolio.
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5.1 Market fit

Tables 4-5 show the quality of fit for our framework to the liquid tranche markets
on various dates over the life of CDX.IG Series 9 and iTRAXX Main Series 8.
These series are interesting because they have seen both relatively tight and
quite wide markets. We can see that model-implied spreads (or upfront premia
with 500 bp running spread for equity tranches) are usually very close to the
corresponding mid-market values. The only time when we do not get inside the
bid-offer is for the CDX 10Y 15-30% tranche on 7 December, but even there the
error is quite small (0.1 bp above the offer quote, with 1.5bp bid-offer spread and
level of the order of 50 bp). We also observe that the equity tranche always fits
exactly, as expected from construction: a pricing error is introduced for a given
tranche only if we have to remove the corresponding expected loss constraint,
as part of arbitrage “filtering” on some dates, but we should get to keep at least
the first constraints on all dates.

Tranche 29-Oct-2007 (5Y) 4-Mar-2008 (5Y)

Bid Offer Mid Model Bid Offer Mid Model

0-3% 16.625 17 16.8125 16.8125 35.25 36.25 35.75 35.75
3-6% 104.5 106.5 105.5 105.53 445 455 450 450.1
6-9% 44.5 46 45.25 45.31 303 318 310.5 310.48
9-12% 26.5 29 27.75 27.82 225 235 230 230
12-22% 16.5 18.5 17.5 17.56 125 135 130 130.01

Tranche 29-Oct-2007 (7Y) 4-Mar-2008 (7Y)

Bid Offer Mid Model Bid Offer Mid Model

0-3% 25.625 26 25.8125 25.8125 40.5 42 41.25 41.25
3-6% 160 164 162 162.03 495 510 502.5 502.56
6-9% 77 79 78 78.03 330 345 337.5 337.53
9-12% 45 47.5 46.25 46.32 260 275 267.5 267.49
12-22% 27 30 28.5 28.57 145 155 150 150

Tranche 29-Oct-2007 (10Y) 4-Mar-2008 (10Y)

Bid Offer Mid Model Bid Offer Mid Model

0-3% 34.125 34.625 34.375 34.375 46 47.5 46.75 46.75
3-6% 329 334 331.5 331.5 590 610 600 600
6-9% 132 135 133.5 133.522 375 395 385 385
9-12% 74 77 75.5 75.58 310 325 317.5 317.4
12-22% 37 39 38 38.36 155 170 162.5 164.32

Table 4: iTRAXX Series 8 tranche spreads and fit.

5.2 Thin tranches

We now revisit Table 1 and append it with thin tranche prices given by the new
framework. In Table 6 we provide results for two types of objective functions
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Tranche 7-Dec-2007 (5Y) 14-Jan-2008 (5Y)

Bid Offer Mid Model Bid Offer Mid Model

0-3% 48.375 49.375 48.875 48.875 52.812 53.812 53.312 53.31
3-7% 233.28 247.72 240.5 240.55 373.45 396.55 385 385.1
7-10% 108.64 115.36 112 112.03 170.72 181.28 176 176.04
10-15% 56.26 59.74 58 58.16 96.03 101.97 99 99.07
15-30% 37.83 40.17 39 39.13 54.32 57.68 56 57.33

Tranche 7-Dec-2007 (7Y) 14-Jan-2008 (7Y)

Bid Offer Mid Model Bid Offer Mid Model

0-3% 55.25 57.25 56.25 56.25 58.062 60.062 59.062 59.062
3-7% 301.95 369.05 335.50 335.52 447.75 547.25 497.5 497.55
7-10% 142.2 173.8 158 158 201.15 245.85 223.5 223.5
10-15% 78.3 95.7 87 87.01 112.5 137.5 125 125
15-30% 42.3 51.7 479 47.01 61.2 74.8 68 68

Tranche 7-Dec-2007 (10Y) 14-Jan-2008 (10Y)

Bid Offer Mid Model Bid Offer Mid Model

0-3% 60.125 61.125 60.625 60.625 63.25 64.25 63.75 63.75
3-7% 554.19 576.81 565.5 565.5 637.98 664.02 651 651
7-10% 200.3 212.7 206.5 206.52 287.12 304.88 296 296.1
10-15% 106.7 113.3 110 110.06 152.77 162.23 157.5 157.53
15-30% 49.47 52.53 51 52.64 75.418 80.082 77.75 78.16

Table 5: CDX.IG Series 9 tranche spreads and fit.
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(smoothness maximising and closest to the one-factor Gaussian copula loss dis-
tribution). We can observe that one seems to be somewhat more effective at
diffusing the initial flat portions of the loss distribution than the other.

Tranche Fair spread, bp

Base corr interp ExpLoss Loss dist
Attach Detach Linear Spline Monotonic Interp Smooth Gauss

13% 14% 76.72 83.05 87.05 93.75 91.71 83.79
14% 15% 60.98 75.81 91.62 88.86 75.33 72.22
15% 16% 118.19 70.07 88.12 75.01 61.51 72.09
16% 17% 104.46 64.85 74.07 62.17 57.07 72.06
17% 18% 93.50 61.80 63.54 57.05 56.53 71.47
18% 19% 85.20 61.49 56.91 55.17 56.52 64.75
19% 20% 77.85 61.97 52.43 54.41 56.51 55.97
20% 21% 69.74 60.69 47.71 54.06 56.50 52.76
21% 22% 60.38 56.71 41.56 53.88 56.49 52.76
22% 23% 50.67 51.46 35.11 53.79 56.49 52.76
23% 12% 42.00 47.55 33.89 53.74 56.49 52.76
24% 13% 36.04 48.24 37.18 53.70 56.49 52.76
25% 26% 32.41 50.49 42.50 53.67 56.48 52.75

Table 6: CDX.IG9 5Y thin tranche spreads, different interpolations (14-Jan-08).

In Figure 1 we look at the debated issue of the shape of the base correlation curve
below the 3% strike. We recall that in [18] the authors used the concept of local
correlation to argue that it should curve upwards, forming a “smile in the skew”,
contrary to the natural extrapolation of the usual base correlation interpolation
methods, which produce a downwards-sloping curve below 3%. For the other
methods, correlations can be bootstrapped from a sequence of model-implied
mezzanine tranches spreads. We observe that one of the popular non-Gaussian
models – the gamma model [4] – also implies a monotonic base correlation
curve. At the same time, extrapolation in equity tranche expected loss (rather
than base correlations) induces an upward slope at the short end, as does our
framework. Even if we ignore extrapolation-based methods, results from the
two arbitrage-free constructions are in disagreement. While interpretations of
this discrepancy may vary – e.g., one may recall problems with global fit of the
gamma model or the fact that the loss distribution framework is influenced by
the initial guess – it is important to keep in mind that multiple arbitrage-free
models fitting the market prices may indeed exist, and they are not restricted
to producing similar results away from the liquid strikes. Our own framework
was built constructively, there was no evidence that it was the unique solution
to the loss distribution generation problem.
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Figure 1: iTRAXX8 5Y base correlations around and below 3% (4-Mar-08).
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5.3 Bespoke portfolios

To demonstrate the performance of our framework outside of the liquid indices,
we present results for pricing a series of tranches of a bespoke portfolio. Equiva-
lent correlations for the bespoke are determined by means of a portfolio expected
loss-based mapping of standard strikes (cf. [3]). The results obtained from dif-
ferent liquid index base correlations are combined, via an averaging procedure,
based on portfolio composition and maturity, to form a tranche curve for a given
bespoke tranche.

The example portfolio consists of 100 names, of which 43 are European and
57 are American. Maturity is roughly half-way between 7Y and 10Y liquid index
tenors. We take real-life CDS curves as of February, 2008, end-of-month; the
average spread is 135 bp, with names ranging from 35 bp (Johnson & Johnson)
to 755 bp (First Data Corp); we include senior, as well as subordinated debt,
with 40% and 20% assumed recovery, respectively. To explore the framework a
bit further, we use three different types of objective function, adding to the cus-
tomary smoothness maximisation and closest to the one-factor Gaussian copula
distribution, a closest to uniform distribution. The piecewise flat loss CDF is
still used as the initial guess.

Table 7 presents results for 2%-thick tranches from 0 all the way up to 62%.
We can see traces of the initial distribution displaying themselves in the form of
tranche sequences with almost identical spreads, but tending the distribution to
the one coming out of a one-factor Gaussian copula model of correlated defaults
looks the most effective in producing a more spread-out distribution.

6 Conclusion

We examined a typical base correlation loss surface and explored the possibility
of modifying it to get rid of arbitrages. We looked for minimal changes to the
original surface, which would restore tranche expected loss consistency without
deteriorating the fit to market prices too much. Our findings indicate that
base correlation loss surfaces are not actually that far from being arbitrage-free.
While violations can be quite blatant, a simple procedure allows to filter them
out, while at the same time containing liquid tranche prices within the bid-offer
on the absolute majority of the observed dates. This certainly serves as an
encouragement for the development of arbitrage-free market-fitting models.

In the process of our investigations, we have developed and presented an
algorithm for generating a strip of portfolio loss distributions at a pre-specified
set of dates. Together with a choice of initial guess and target distribution shape,
this algorithm can be used as an arbitrage-free CDO tranche pricing method. We
demonstrated how this method produces consistent prices for arbitrary index
tranches and, coupled with a suitable index-to-bespoke correlation mapping
method, for bespoke tranches as well.

The current approach is perhaps the most direct way of getting an arbitrage-
free pricing tool from base correlations. The presented pricer is not unique, since
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Tranche Fair spread, bp
Attach Detach Smooth Uniform Gauss

0% 2% 2395.0 2282.84 2352.6
2% 4% 1116.0 1226.7 1198.6
4% 6% 664.2 647.9 655.0
6% 8% 436.3 451.3 443.6
8% 10% 336.1 332.5 330.3
10% 12% 235.9 241.9 241.1
12% 14% 206.3 197.9 199.0
14% 16% 135.0 148.0 151.6
16% 18% 122.3 135.4 135.8
18% 20% 122.2 126.4 126.2
20% 22% 122.2 123.9 122.4
22% 24% 119.3 115.4 113.8
24% 26% 109.9 110.1 108.2
26% 28% 102.8 108.4 106.4
28% 30% 97.4 103.3 103.0
30% 32% 95.0 98.7 99.0
32% 34% 94.0 98.5 97.5
34% 36% 93.8 98.5 97.4
36% 38% 93.7 98.5 97.3
38% 40% 93.7 98.5 97.2
40% 42% 93.7 98.5 96.9
42% 44% 93.7 98.5 96.6
44% 46% 93.7 98.4 95.1
46% 48% 93.7 98.4 92.0
48% 50% 93.7 98.4 89.0
50% 52% 93.7 98.3 87.2
52% 54% 93.7 98.1 86.6
54% 56% 93.7 97.5 86.3
56% 58% 93.7 90.3 86.1
58% 60% 93.6 63.4 86.0
60% 62% 64.9 34.7 59.8

Table 7: Breakeven spreads for tranches of a bespoke portfolio.
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it depends on the arbitrage “filtering” algorithm, the initial guess and the choice
of the target distribution. While we have chosen the simplest construction,
the principle and the resulting framework is generic. It can be used for any
products amenable to modelling with structural copula-like methods (notably,
those without path-dependency and dynamic features). It is likely to find use
in practical situations when base correlation consistency and market fit are key.
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