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Agenda

■ Capturing counterparty risk in the “new world”

■ CCPs, regulators, banks may have different requirements

■ Making the most of available information

■ Market-implied and historical data; structural approach

■ In focus: credit and equity

■ Modelling dependence

■ Correlation or cointegration

■ Common drivers (volatility, asset returns,…)

■ Suggestions and preliminary conclusions
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Counterparty risk today

■ The way we look at counterparty risk is changing

■ Increased role of clearing and margining (EMIR, Dodd-Frank)

■ Central Counterparties (CCPs)

■ Tails become more important, but specific requirements result in 

zooming in on different areas

■ Still need “classical” counterparty risk calculations: expectation for regulatory 
capital and CVA, and 90th or 99th percentile exposures

■ With more trades collateralised and cleared, banks focus on higher 
percentiles over typical slippage / no-control periods for residual risk

■ Long-term stability of the financial system would require extreme events over 
long horizons to be assessed

■ Cross-asset dependence can become crucial in many of these cases

■ Pricing and tail risk

■ Stress scenarios for pricing model validation

■ Can more accurate modelling of tails help pricing models?
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CCP and Margining

■ CCP

■ Client – clearing is segment specific, but client termination is across all 
segment (and un-cleared trades)

■ CCP – rulebook and legal entity specific (e.g., LCH SA vs. LCH Ltd)

■ Cross-asset netting – may be; portfolio effect – definitely

■ Extreme events are expected to be propagating through majority of markets

■ Margining (EMIR) 

■ Margins (both VM & IM) must be exchanged between counterparties when 
they are both either Financial Counterparties (FC) or Non-Financial 
Counterparties above the clearing threshold (NFC+) according to EMIR 
definitions.

■ Transactions between counterparties where one of them is neither FC nor 
NFC+ are exempted 

■ Legacy – pre-EMIR, but also pre-EBA RTS implementation 

■ Need to cover existing risk scope and address new
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Counterparty risk: what needs to be measured and why

Percentile/Horizon Short (10d) Medium Long (2y+)

Lower  

(Expectation; 90 -

99%)

Collateralised 

legacy; NFC-; IM 

calculation / 

verification –

CCPs/FC, NFC+

Legacy trades 

and NFC-

(“classical”);

IM stability–

CCPs/FC, 

NFC+; CCP

Legacy trades 

and NFC-

(“classical”)

Higher (above 99%) Risk above IM 

covered level

CCP/FC, NFC+

Same Systems stability 

- stress tests; 

Regulators; All 

positions
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Risk factors and dependence: what to model and how (I)

■ Short-term co-movement: returns

■ Returns are best for describing/predicting underlying moves over short horizons

■ Correlated diffusions or common jumps to model joint behaviour

■ Long-term predictions: levels

■ Trends matter much more for long horizons: diffusive moves average out (also
), effect of jumps is short-lived

■ Classical example: long-term mean of an Ornstein-Uhlenbeck process

■ Levels can be used to enforce “pathwise” dependence (e.g., in scenarios with 
low share prices, spreads should be high)

■ Cross-asset test case: Equity-Credit

■ Relevant for equity financing, repo, SLAB

■ Some well-known fundamental relationships (jump-to-ruin, low share prices –
wide spreads, etc.)

■ Structural link
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Risk factors and dependence: what to model and how (II)

■ Modelling quantities

■ Equity returns, share price levels

■ CDS spreads preferable to hazard rates in risk context due to observability

■ Hazard rates generate “price-able” scenarios

■ Equity volatility

■ Asset returns

■ Dependence

■ Correlation (and/or common jumps) of stochastic drivers for returns

■ Cointegration, or mean-reverting “spread” between levels

■ Regime shift: time- or state-dependent correlation (e.g., higher for extreme 
returns than in the middle of the distribution)

■ Common drivers: if correctly incorporated, leads to better models

■ Fundamental causality: changes in the same external quantity driving changes in equity 

and credit

■ Mathematical stability: if a common driver exists, modelling it + relationships will produce 

a more robust model
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Market information

■ Risk models operate in the “real-world measure”, so historical  data are 

generally preferred for calibration

■ However market-implied information has the advantage of forward view

■ Instantaneous CDS spreads contain information about default probabilities 
and can be used to predict sudden moves in equity

■ Implied volatility represents market view of future volatility of returns

■ Asset returns: strictly speaking, not market data, but can be useful

■ Potential common driver for equity and credit (via structural models)

■ May be used to model rating transitions

Type Historical Market-implied

Equity Equity prices and 
returns, volatility of 
returns, jumps in returns

Volatility (ATM, 
OTM/smile)
[Equity]

Credit CDS spreads, returns 
and jumps; ratings

CDS spreads

Asset returns ���� ����
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Short-term equity-spread return correlations

■ Negative correlation expected market-wide: tightening of spreads is 

associated with increased equity returns as share prices go up

■ For individual names, some dependence on credit quality may transpire

■ Poorly rated names show stronger link:

■ In this talk, we are more interested in longer term dependencies

■ Horizon of interest is several months to several years

■ Short-term correlation tends to average out on large portfolios

■ Tail risk must include long-term effects
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Volatility as a common driver

■ Standard common driver model is Merton’s asset return construction – but 

should we try a new flavour?

■ Volatility as a risk indicator can affect market prices of equity and debt

■ Cf. even in Merton: equity is a call and debt, a put on asset value

■ Campbell & Taksler (2003): booming stock market in 1990s accompanied by 

rising corporate bond yields – counterintuitive?

■ Optimism of equity investors not shared by bond investors 

■ Volatility may be the key: more upside for shareholders, more risk for bondholders 

■ Share prices and volatility of returns

■ “Leverage effect”: price growth is less volatile than price drops

■ Historical volatility commonly used as a predictor of future returns distribution

■ Cremers et al. (2008) : implied volatility affects credit spreads

■ Both ATM and OTM/skew explain a significant part of CDS spread levels

■ Carr & Wu (2009, 2011): economic similarity between CDS and deep OTM 

equity puts
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■ Use linear regression at first: R2 to indicate strength of relationship

■ According to our paradigm, need to analyse various combinations

■ CDS and equity

■ Levels and returns

■ Implied and historical volatility

■ ATM volatility and skew

■ Questions

■ Are CDS levels stationary? 

■ Cremers et al. (2008) argue to the affirmative

■ What to use for OTM implied volatility?

■ “ATM skew” vs. “DOOM put vol”

■ If standard deviation of historical returns “corresponds” to ATM implied 
volatility, what is “historical skew”?

■ Stochastic volatility: correlation between equity returns and their variance (Heston)

■ Jump-diffusion: average size and intensity of jumps in equity returns (historical estimates 

less stable)

■ “Equity levels” ?? (more on this later)

Relationships we can measure
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■ Universe:

■ 500 names from major international equity indices with liquid CDS

■ Time series  from September 2006 to August 2013

■ More liquid names subset: 160 names

■ Implied volatilities:

■ 6m option implied ATM vols

■ Deep OTM put vols (extrapolated to 30% strike)

■ Skew as (ATM – OTM) / ( 100% - 30% ) < 0 for equity

■ Historical volatilities:

■ Standard deviation of 10-day returns, estimated over 6 months and annualised 

■ Correlation with variance measured over 6m window

■ Time-averaged jump measures over 6m windows

Measurement: the boring details
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CDS spread and volatility (I): levels on levels - implied

■ Median R2 is 32% for ATM vols, going up to 
46% when OTM is added 

■ 45% and 55%, respectively, for the subset of 
more liquid names

■ Distribution of R2 clearly shifts to the right 
when skew is added

■ Regressions shown for Deutsche Bank: 
positive slope means: high vol → wide 
spreads
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CDS spread and volatility (II): levels on levels - historical

■ Weaker dependence on historical vol: median R2 is 24% (34% for subset of 

more liquid names)

■ Jumps explain residuals better than correlation between variance and returns

■ Median R2 goes up to 41% (47% for liquid), vs. 27% (41% for liquid) with variance-
returns correlation

■ Jump risk embedded in CDS or non-stationarity of average jump size time series?

■ Related question: which language is better at describing equity dynamics, 

jump-diffusion or stochastic volatility? (separate study)
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CDS spread levels on historical volatility levels: example 1

Computer Sciences Corporation: 
averaged jumps explain CDS 
residuals better than variance-spot 
correlation
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CDS spread levels on historical volatility levels: example 2

JP Morgan Chase: variance-spot 
correlation explains CDS residuals 
better than averaged jumps
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CDS spread and volatility (III): returns on returns - implied

■ Very weak dependence: median R2 is 
<8% for ATM vols, OTM adds nothing 

■ Slightly higher median R2 (20%) for the 
more liquid names – still visibly smaller 
than levels, and no OTM effects

■ Less clustering in the data than for levels

■ Regressions shown below for Next plc: 
positive slope, just as for implied vols
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CDS spread and volatility (IV): returns on returns - historical

■ Hardly any dependence at all: median R2

is 1-3%, no matter how many historical vol 
returns are taken or which skew proxy is 
chosen

■ Picture does not change for liquid names

■ Regressions shown for Accor SA
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Equity and volatility (I): returns on returns - implied

■ Median R2 is 30% for ATM vol returns, 
OTM adds nothing 

■ Slightly higher median R2 (40%) for the 
more liquid names, still no OTM effects

■ Seems like implied volatility skew plays 
no role in equity returns, only ATM does

■ Regressions shown below for AT&T : 
negative slope means: high vol → low 
equity returns
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Equity and volatility (II): returns on returns - historical

■ Hardly any dependence: median R2 is 3% 
for historical vol returns, increasing to 4% 
with either one of the two historical skew 
proxies

■ Very similar numbers for more liquid names

■ Same situation as for CDS returns

■ Regressions shown for Toshiba Corporation
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■ CDS spread analysis demonstrates that levels regress much better than 

returns, especially when historical vols are used

■ Problem: equity prices are meaningless for OLS regressions!

■ Dispersion across markets and currencies, no uniform base for comparison

■ Equity price time series are non-stationary, so spurious regression likely

■ Can we take a stab at designing a synthetic “equity level”?

■ Step back: why are equity prices not meaningful?

■ Share price is not a good indicator of a company’s “investor value”: doubling the 
firm’s assets and liabilities will increase share price, but not reduce its riskiness 

■ CDS spreads (price of default risk) don’t have this “size effect”, nor do equity returns

■ Idea: come up with an appropriately normalised share price, to make the 

measure comparable across different types and sizes of companies

■ Proposal: divide share price by the price of the index it belongs to

■ Better statistical properties of the time series expected

■ Market cap weighting helps: normalisation brings companies to more equal footing

■ Statistical tests show improvement in stationarity, although not for all names 

and indices (could be due to index weighting rules?)

Missing: equity levels on volatility levels?
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“Equity levels” on volatility levels regressions

■ Performed on a subset of ca. 200 names with near-stationary “equity levels”

■ See improved R2 over historical vol returns, but not over implied vol returns:

■ Median R2 is 9% for implied ATM vols and 11% for historical, increasing to 13.5% 
with OTM vol and to 14.5% with variance-returns correlation or jumps (not shown)

■ Compare with 30% median R2 for equity returns on ATM vol returns, 3-4% R2 on 
historical vol returns, and no effect of skew or its proxies

■ Still smaller than the “levels” regression for CDS spreads

■ Note: no information on direction of price moves, so slope can have any sign
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Equity levels on volatility levels: examples

Implied:

AMD

Historical:

Verizon
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■ Dependence of extreme returns can differ from “normal” returns

■ For example, even low-correlated names can start dropping together in a crisis

■ We perform regressions on the top and bottom 10% returns only, and 

compare with main results (“central” return scenarios)

■ One tail at a time, to avoid artificial “R2 inflation”

■ Use CDS-on-vol returns as an example

■ Look for a pattern such as the one shown on the next slide

■ Some evidence of different dependence strength observed

■ More of high R2’s in the “right tail”: stronger dependence between high vol returns 
and high CDS spread returns, especially for historical vols

■ More of low R2’s in the “left tail”: weaker dependence between low returns

■ Consistent with the “crisis” intuition, but median R2 still only goes up to ~10%

■ CDS on implied vol returns: from 7.7% for all returns to 10.3% for high returns

■ CDS on historical vol returns: from 2.5% for all returns to 10.5% for high returns

■ Fact: linear models are not very good at capturing tail dependence… 

Tail regressions
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CDS spread returns on volatility return tails: examples

Implied:

BAT

Historical:

Heidelberg 

Cement
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CDS spread returns on volatility return tails: R2 distributions

Right tail 

(high returns)

Left tail

(low returns)



27

■ We found some evidence of dependence between volatility and both CDS 

spreads and equities

■ Strongest for ATM vols

■ Better for CDS levels than for returns

■ Some valuable information gathered

■ Dependence between levels can be useful for longer-term links (although not 
quite working for equity)

■ Confirmation of change in the dependence for extreme returns (although need a 
better model to capture it properly)

■ Overall, the dependence is generally not strong enough to build a model 

around  

■ Weakest for historical vols, which has the most importance for risk models

■ Cannot reliably conclude that volatility can be modelled as a common driver 

behind equity and credit underlyings

■ Unlikely that the situation is any better in the tails…

■ Volatility as a guide to equity modelling language (jumps vs. correlation)  -

some indicative findings in favour of jumps

Volatility as a common driver: conclusions
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■ “New flavour” did not work, so back to the standard common driver: Merton

■ Structural approach: credit and equity are driven by asset returns

■ Merton: equity = call, debt = put on a firm’s assets

■ Ratings: convenient discretisation… 

■ Moody’s KMV and similar: ratings change when asset returns cross thresholds

■ Historical transition probability tables provide a calibration vehicle for discretised 
asset return models

■ … or a fundamental property of asset return evolution?

■ Are asset return dynamics continuous or event driven?

■ Does the market take ratings into account or are they arbitrary discretisations?

■ Question: how do share prices and credit spreads react to rating migrations?

■ Agency rating actions are likely to trail the market

■ Need to observe behaviour before and after downgrades and upgrades

■ Centring around the migration event, look at averaged share price, CDS 

spread and implied volatility behaviour

■ As next pages indicate, agency rating changes are clearly reflected in the 

behaviour of market parameters (driving event)

What next? (preview)
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Share price dynamics around rating migrations

■ Downgraded names – “hockey 

stick” pattern: negative drift before, 

stable after

■ Starts approximately 9 months 

before the event

■ Upgraded names: smaller upward 

drift before, largely stable after

■ Timing less clear, possibly a slower 

and/or weaker effect

■ “Risk-return” pattern after the event 

decreases if  “de-systematised” per 

rating band
* “De-syst” means that market average has been subtracted
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CDS spread dynamics around rating migrations

■ Downgraded names – “hat” 

pattern: spreads rise before, drop 

after

■ Post-downgrade level higher, 

reflecting increased credit risk

■ Upgraded names: less clear, some 

hybrid of “hockey stick” and “hat” 

patterns

■ Signal weaker overall
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Implied volatility dynamics around rating migrations

■ Downgraded names: similar to 

CDS (“hat” pattern), stronger for 

highly rated names

■ Some unexpected pre-event drifts 

detected as well

■ Upgraded names: “hockey stick” 

pattern, implied vol dropping and 

staying low through the event 
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Asymmetry in the market?

■ Share price reactions to downgrades vs. upgrades appears to differ in strength

■ Downgrades preceded by 6-9 month of negative drift, ~20% annualised

■ Positive drift before upgrades less significant, at most 5% p.a. over the same period

■ Bad news for Merton’s model?

■ Example: consecutive rating changes of up 1 notch, then down 1 notch, vs. down 1 
notch, then up 1 notch

■ Should come back to the same price in the model – but not in the market?

■ Evidence over longer term (3-5 years) - Merton model takes over
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■ Modelling credit-equity dependence is a multifaceted beast

■ Model returns or levels

■ Use market-implied or historical data

■ Via correlation or common driver

■ Look at all returns or only extreme ones separately

■ Merton’s idea presents several candidates for a common driver

■ Asset returns

■ Volatility, due to optionality in both debt and shares

■ Volatility does not perform well as common driver behind equity and credit

■ Some dependence pattern discovered, but overall weak

■ Classical structural link may work better

■ Initial analysis based on rating migrations shows promising patterns

■ Strong evidence to support event-driven dynamics for asset returns

Conclusions
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